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Abstract 1 

The categorization of food via sensing nutrients or toxins is crucial to the survival of any organism. 2 

On ingestion, rapid responses within the gustatory system are required to identify the oral stimulus 3 

to guide immediate behaviour (swallowing or expulsion). The way in which the human brain 4 

accomplishes this task has so far remained unclear. Using multivariate analysis of 64-channel scalp 5 

EEG recordings obtained from 16 volunteers during tasting salty, sweet, sour, or bitter solutions, 6 

we found that activity in the delta-frequency range (1-4 Hz; delta power and phase) has information 7 

about taste identity in the human brain, with discriminable response patterns at the single-trial level 8 

within 130 ms of tasting. Importantly, the latencies of these response patterns predicted the point 9 

in time at which participants indicated detection of a taste by pressing a button. Furthermore, taste 10 

pattern discrimination was independent of motor-related activation and encoded taste identity 11 

rather than other taste features such as intensity and valence. On comparison with our previous 12 

findings from a delayed taste-discrimination task (Crouzet et al., 2015), taste-specific neural 13 

representations emerged earlier during this speeded taste-detection task, suggesting a goal-14 

dependent flexibility in gustatory response coding. Together, these findings provide the first 15 

evidence of a role of delta activity in taste-information coding in humans. Crucially, these neuronal 16 

response patterns can be linked to the speed of simple gustatory perceptual decisions – a vital 17 

performance index of nutrient sensing. 18 

 19 
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Introduction 21 

 22 

The internal representation of sensory events is fundamental to the perception of the external world 23 

and adaptive behaviour. Such a representation is achieved in a spatial distribution of neuronal 24 

activation which initiates communication across spatially distributed brain areas (cf. Fries, 2015).  25 

Rhythmic neuronal activity or oscillations have been regarded as a key mechanism in the process 26 

of neural communication in different species (Buzaki, 2006), for instance by sequencing 27 

information into temporal processing windows (cf. Lopes da Silva, 1991), and by linking neural 28 

assemblies through phase coherence (Tallon-Baudry, 2003; Fries, 2005, 2015). Oscillatory neural 29 

activity has been associated with various brain functions (motor action, Salenius and Hari, 2003; 30 

consciousness, Ward, 2003; learning and memory, Kahana, 2006; motivation and reward, 31 

Knyazev, 2007; attention, Klimesch, 2012). Recent advances in the field suggest that dysfunctions 32 

of the nervous system can often be traced back to disturbed network activity which lead to the 33 

concept of “oscillopathies” in neurodegenerative diseases (cf. Nimmrich et al., 2015), for instance 34 

revealing pathophysiological beta oscillations in Parkinson’s disease (Little and Brown, 2014), 35 

gamma oscillations in Schizophrenia (Mathalon and Sohal, 2015), and both alpha and gamma 36 

oscillations in Alzheimer’s disease (Nimmrich et al., 2015). Notably, the identification of impaired 37 

network functioning necessitates prior characterization of normal activity, beginning with the 38 

sensory systems as the initial points of interaction with the external world. Such rhythmic activity 39 

is currently well characterized for the visual, auditory, somatosensory, and olfactory senses in 40 

various species (cf. Koepsell et al., 2010), yet insufficiently so for the gustatory system. Only 41 

recently have findings provided evidence of the role of slow-wave synchronized activity in taste 42 

processing in rodents  (Pavao et al., 2014), whereas no studies at all have characterized the time-43 

frequency dynamics of the human gustatory system.  44 
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 45 

This lack of knowledge of the frequency by which information is transmitted within the human 46 

gustatory system surely does not reflect the importance of the gustatory system. On the contrary, 47 

the ability to taste ensures an organism’s survival by enabling the identification of nutrients and 48 

avoidance of toxins via a discrimination of taste categories (often referred to as taste qualities). 49 

Accordingly, taste categories have been associated with carbohydrates (sweet), electrolytes (salty), 50 

acids (sour) or alkaloids (bitter). In rodents, distinct receptors on the tongue respond to chemicals 51 

signifying each taste category (Chandrashekar et al., 2006) before the signal is transduced upstream 52 

via the gustatory nucleus of the solitary tract in the rostral medulla, and the ventro-posterior medial 53 

nucleus of the thalamus to the gustatory cortex in the insula (Carleton et al., 2010). There is 54 

evidence of two competing models of taste coding: hardwired, labelled lines with specialized 55 

neurons (Chen et al., 2011), and flexible, learning-dependent taste representations (Accolla et al., 56 

2007; Carleton et al., 2010), possibly through broadly tuned neurons (Stapleton et al., 2006). 57 

Notwithstanding the unresolved issue of how taste categories are encoded along the peripheral 58 

gustatory pathway, at the level of gustatory cortex, however, taste information can be decoded from 59 

dynamic activity patterns obtained from neuronal ensembles (Jones et al., 2007) and local field 60 

potentials (Pavao et al., 2014) in rodents, and large-scale EEG scalp recordings in humans (Crouzet 61 

et al., 2015). The availability of taste information from large-scale recordings enables 62 

investigations of the time-frequency dynamics of cortical information transfer in taste perception. 63 

 64 

For our investigation, we recorded multi-channel head-surface electroencephalography (EEG) in 65 

human participants while they detected salty, sweet, sour, or bitter solutions, in order to investigate 66 

the neural mechanism by which the human gustatory system encodes taste information. First, we 67 

investigated whether the taste-evoked electrophysiological response would selectively engage a 68 
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specific frequency band, given that frequency-specific neuronal signatures have been observed in 69 

other sensory systems (Koepsell et al., 2010). Since participants received four different tastants, 70 

we were further able to test whether taste-specific content is represented in the frequency-specific 71 

activity. Second, we hypothesized that this phenomenon would not be a mere by-product of 72 

network activity, but bear functional relevance for perceptual decisions (Harmony, 2013), by 73 

specifically testing whether the timing of the neural gustatory response would predict the timing at 74 

which participants detect a taste. Third, because task dependency has been reported with respect to 75 

taste-related behavioural responses in humans (Halpern, 1986; Bujas et al., 1989) and cortical 76 

activation in rodents (Fontanini and Katz, 2009), we probed the flexibility of human gustatory 77 

processing by comparing taste-evoked neural responses between the speeded detection task 78 

presented here and a previously reported delayed categorization task (Crouzet et al., 2015). 79 

 80 

MATERIALS AND METHODS 81 

 82 

Participants  83 

Sixteen healthy participants (12 women; mean age 28±5.1 years; BMI 22±3.0) completed the study. 84 

Participants reported having no taste impairments and no history of neurological or psychiatric 85 

disease. They signed informed consent prior to the start of the experiment and received monetary 86 

compensation for participation. The study protocol conformed to the revised Declaration of 87 

Helsinki and was approved by the ethics board of the German Psychological Society. 88 

 89 

Stimuli and taste delivery 90 

Tastants were aqueous solutions with a clear taste: 0.65 M sodium chloride (salty;from a local 91 

supermarket REWE GmbH, Köln, Germany), 0.039 M citric acid (sour; CAS 77-92-9, Sigma 92 
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Aldrich, Inc., St. Louis, MO, USA), 0.44 M sucrose (sweet;from a local supermarket REWE 93 

GmbH, Köln, Germany), 0.0002 M quinine monohydrate (bitter; CAS 207671-44-1, Sigma-94 

Aldrich, Inc., St. Louis, MO, USA) and 0.05 M Splenda® (sweet; Tate & Lyle, London, UK) in 95 

distilled water. Splenda trials were not included in the present analysis because they were 96 

perceptually undistinguishable from sucrose. Concentrations were chosen based on previous 97 

studies to be clearly perceivable and to not elicit discomfort or disgust. Taste stimuli were 210 µl 98 

aliquots delivered at a flow rate of 233 µl/s during 900 ms as aerosol to the anterior part of the 99 

slightly extended tongue with the GU002 gustometer (Burghart Messtechnik GmbH, Wedel, 100 

Germany; Figure 1A). The gustometer stores taste and rinse solutions in separate bottles that each 101 

supply a syringe pump with a check valve (cf. Iannilli et al., 2015). From here, solutions and 102 

compressed air are transported via separate 5 m long Teflon tubes to a manifold outlet within a 103 

spray nozzle that atomizes the liquid. The tubes run inside a hose filled with water at 38°C that 104 

heats the stimuli which are, after atomization, delivered at near body temperature to minimize any 105 

thermal sensations. The spray nozzle is positioned 1-1.5 cm above the slightly extended tongue so 106 

that the spray covers a large area of the anterior tongue’s surface. During the experiment, the 107 

participant comfortably leans against a forehead rest, which stabilizes the head and holds the spray 108 

nozzle in place. In this position, liquids were applied to the slightly extended tongue and not 109 

swallowed but collected in a bowl underneath the chin (Figure 1B). The position was monitored 110 

online via camera to ensure that the spray continuously covered the surface of the anterior tongue 111 

and to monitor movements. The stimulation comprises a regular sequence of spray pulses, during 112 

each of which 70 µl of liquid are dispensed during 100 ms every 300 ms. The timing and flow rate 113 

were optimized to minimize mixing of individual spray pulses and to elicit the experience of a 114 

continuous flow of liquid to the tongue. The distinct spray pulses permit to embed a taste stimulus 115 

in the “flow” of control or water stimuli without tactile cue. Note that participants experience a 116 
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tactile “pulsing” only for a few seconds until the lingual somatosensory system is habituated. 117 

During the development of this procedure, we determined the time required for lingual habituation; 118 

we measured the time to the abolishment of the lingual somatosensory steady-state response and 119 

confirmed our findings with verbal reports of numbing of the tongue. The steady-state response 120 

was abolished within less than 10 s. As a result, we present water pulses for at least 10 s at the 121 

beginning of each experimental block or experiment (see Tzieropoulos et al., 2013; Crouzet et al., 122 

2015). The time between the TTL pulses controlling the syringe plungers, which push the liquids 123 

through the tubes and the spray nozzle, until the aerosol reaches the tongue’s surface, was measured 124 

by the supplier for the experimental setting decribed here following a previously proposed 125 

conductivity measurement (Kelling, 1986). It revealed a time lag of 36 ms (SD = 2 ms), which the 126 

stimulus onset in the EEG data was corrected for.  127 

 128 

Experimental procedure 129 

Each trial (see Figure 1C) started with a central black fixation cross on gray background presented 130 

for a variable amount of time (0.8-1.5 s) on a 24” thin film transistor (TFT) screen placed at a 131 

distance of 45 cm in front of the participant. The fixation cross instructed participants to refrain 132 

from any movements; it remained on screen during taste stimulation (0.9 s) until the end of the 133 

response-time measurement (2.1 s). Participants were instructed to press a button on a serial 134 

response box (Psychological Software Tools, Inc., Sharpsburgh, PA, USA) with the right or left 135 

index finger as soon as they tasted anything (simple response-time task). Response hands were 136 

switched between blocks and the starting hand was counterbalanced across participants. The 137 

fixation cross was then replaced by the instruction to rate the intensity and pleasantness of the taste, 138 

by moving the mouse cursor along a visual analogue scale that was labelled at the end points with 139 

“no sensation” and “extremely intense” and “extremely unpleasant” to “extremely pleasant”, 140 
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respectively. The rating procedure lasted 8 s and was followed by a blank screen for 9 s to minimize 141 

adaptation. Overall, 300 taste stimuli (60 per tastant) were presented in pseudo-random order over 142 

the course of six experimental blocks. The experiment lasted approximately 120 minutes including 143 

breaks between blocks and an initial training during which participants were familiarized with the 144 

procedure. Participants were presented with brown noise via noise-isolating in-earphones to mask 145 

any auditory cues from the spray pulses. 146 

 147 

EEG data acquisition and pre-processing  148 

Participants were seated in a sound-attenuated recording booth (Studiobox GmbH, Walzbach, 149 

Germany) with the gustometer positioned outside to minimize auditory cues from the device. The 150 

electroencephalogram (EEG) was recorded with an activCHamp amplifier system (Brain Products 151 

GmbH, Munich, Germany) at a sampling rate of 500 Hz with analogue 0.01 Hz highpass and 200 152 

Hz lowpass filters using PyCorder (Brain Vision LLC, Morrisville, NC, USA) and with 64 153 

Ag/AgCl active electrodes placed in an elastic cap according to the extended 10-10 system. The 154 

EEG data were processed offline using EEGLAB (Delorme and Makeig, 2004) in MATLAB 155 

(Mathworks, Natick, MA, USA) and Autoreject (Jas et al., 2017) in Python. First, we resampled 156 

the data to 200 Hz to improve the signal-to-noise ratio and to reduce computation times 157 

(Grootswagers et al., 2017). We removed slow drifts with linear detrending and line-noise (50 Hz 158 

in Germany) with a set of multi-tapers over sliding time windows implemented in the CleanLine 159 

plugin. Second, we segmented the continuous data into epochs from −1.5 s to 2.5 s relative to 160 

stimulus onset and applied Autoreject for noisy channel interpolation and epoch exclusion. Less 161 

than 1% of all trials were removed. Third, we computed an extended Infomax independent 162 

component analysis implemented in EEGLAB (ICA; Makeig et al., 1997) to identify artefactual 163 

components with manual inspection and ADJUST (Mognon et al., 2011),  which uses temporal and 164 
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spatial characteristics of the independent components to detect outliers. Components representing 165 

common ocular, cardiac or muscular artefacts were subtracted from the data. Lastly, the data were 166 

re-referenced to the average of all channels. To visualize the taste-related EEG activity, the global 167 

field power (GFP), a reference-free index of overall field strength (Lehmann and Skrandies, 1980), 168 

was calculated as the standard deviation over the entire electric field (i.e., all electrodes) at each 169 

sampling point for each participant and for each condition separately.  170 

 171 

Experimental design and statistical analysis 172 

We employed a within-subjects design with one factor (taste category) with four levels (salty, sour, 173 

bitter, sweet). All analyses were conducted within participants and are described in more detail in 174 

the respective subsections below. The wavelet transformation was performed in MATLAB using 175 

EEGLAB, decoding was implemented with custom scripts in R (R-Core-Team, 2014).  176 

 177 

Time-frequency decomposition 178 

To obtain a time-frequency representation of the EEG data, we computed the spectral power and 179 

phase angles via continuous Morlet wavelet transforms of single trials for the frequency range from 180 

1 to 100 Hz in 40 logarithmically spaced steps). We increased the length of the wavelets linearly 181 

from 1 cycle at 1 Hz, to 15 cycles at 100 Hz to optimize the trade-off between temporal resolution 182 

at lower frequencies and spectral precision at higher frequencies. The convolution was performed 183 

non-causally (i.e. a time point is the center of the time window) in steps of 10 ms from −0.2 to 1.5 184 

s. The result of the convolution is a complex number of which the magnitude represents the spectral 185 

power and the angle the phase. For visualization, we quantified the degree of event-related phase 186 

synchronisation across trials with the inter-trial coherence (ITC; cf. Busch et al., 2009), which takes 187 

values between 0 (no synchronisation) and 1 (perfect synchronisation).  188 
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 189 

Taste discrimination analysis 190 

To search for taste information in the time-frequency spectrum, we performed a multivariate 191 

pattern analysis (MVPA, cf. Kriegeskorte, 2011) at every time and frequency step, using the log-192 

transformed spectral power and phase angles in radians. The MVPA was implemented with a L2-193 

regularized linear support vector machine (SVM; Fan et al., 2008) within subjects in a stratified 194 

leave-one-trial-out cross-validation (CV; i.e. on every iteration, a trial of each taste is left out) for 195 

optimal model estimation. The multi-taste classification problem was solved via pairwise binary 196 

classifiers with the final performance as the average over the six one-versus-one comparisons (cf. 197 

Hand and Till, 2001). Thus, the decoder would see the instantaneous topographical distribution of 198 

the spectral power or phase angles of a large subset of trials and learn the taste-specific 199 

systematicity in their patterns. The availability of such taste-specific information was tested by 200 

generalizing these patterns to the taste-evoked responses of the left-out trials.  201 

 202 

We optimized the regularization constant C in incremental steps of negative powers of 10 (10-4:0) 203 

in a nested CV. In this tuning protocol, the training set was iterated in an inner 10-fold stratified 204 

CV to search for the C which achieved optimal performance across time points on the inner subset 205 

of the data. The classifier was then trained on the full training set with the best value for C of the 206 

inner tuning set and tested for its performance on the left-out trials which were neither part of 207 

training nor tuning. We evaluated the classifier performance with the area under the receiver 208 

operating characteristic curve (AUC), which provides a balanced accuracy metric (50% 209 

performance corresponds to chance).  For the assessment of statistical significance (p < .05) and 210 

adjustment for multiple null hypothesis testing, we performed cluster-based permutation analyses 211 

on the AUC scores (Maris and Oostenveld, 2007).  212 
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 213 

Task dependency of taste coding 214 

After identification of the frequency band that contained taste information, we performed an 215 

MVPA which incorporated both power and phase characteristics to compare taste information 216 

coding between the task reported in the current study (hereafter, speeded taste detection) with a 217 

previously reported task, during which participants were to taste the stimuli and to discriminate 218 

tastes only after presentation (hereafter, passive or delayed taste discrimination; Crouzet et al., 219 

2015). For this, we isolated the signal via zero-phase Hamming-windowed sinc finite impulse 220 

response (FIR) filter (−6 dB cutoff, maximum passband deviation of 0.2%, stopband attenuation 221 

of −53 dB). Epochs were resampled to 100 Hz to match the temporal resolution of the wavelet 222 

analysis, and filtering was performed on epochs from −1.2 s up to 2.5 s to minimize aliasing before 223 

reducing the epochs to the −0.2 to 1.5 s interval of interest. The decoding procedure was performed 224 

as described above (see Taste discrimination analysis). Statistical significance of above-chance 225 

performance was assessed via one-sided binomial tests and adjusted to a minimum of 100 ms of p-226 

values < .05. Differences between the decoding performance scores for the two tasks were 227 

compared via two-sided Wilcoxon rank sum tests and adjusted to a minimum of two consecutive 228 

time points. 229 

 230 

Controlling for the influence of motor activation 231 

To ensure that the classifiers were not using information related to the motor response in order to 232 

discriminate between the tastes, we ran a control analysis in which we repeated the multiclass 233 

MVPA with a careful separation of response sides. Here, we trained the classifiers to discriminate 234 

between tastes by means of the electrophysiological patterns of trials with a left button press, and 235 

tested their performance on patterns of trials with a right button press, and vice versa (out of sample 236 
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classification). If the classification performance was comparable to the performance found for taste 237 

decoding this would demonstrate that the classifier is independent of motor activation and that it 238 

indeed used taste-specific information.  239 

 240 

Correspondence between neural and behavioural responses 241 

To test whether the neural taste signal predicts taste detection times, we estimated signal onsets for 242 

single trials. We performed the MVPA within a taste category to discriminate a trial against its 243 

water baseline (average of 200 ms prestimulus). This analysis is ideal for estimating the 244 

classification performance independently of the contrast to the other tastes, and the decoding task 245 

closely resembled the taste-detection task that participants performed. More specifically, a 246 

classifier was to decide at every time point of a trial whether the neural signal shows a taste-247 

response or still reflects the water rinse, essentially mirroring the decision participants performed 248 

between water rinse and the detection of a taste in that very same trial in which the signal was 249 

obtained.  250 

We applied the same CV and tuning protocol as for the previous analyses. Trials without responses 251 

or with responses faster than 100 ms were excluded (3.5% of trials). To determine the time at which 252 

taste patterns emerged at the level of single trials, we used a strict adjustment procedure. To account 253 

for cases in which the correct label may be assigned by chance, we estimated for each correct 254 

decision a decoder’s confidence through Platt scaling (Platt, 1999) and computed the lower 5th 255 

percentile of this confidence estimate for each C parameter (regularization shrinks confidence). 256 

The onset within a trial (i.e. the emergence of a pattern which successfully distinguishes a taste 257 

from water) was determined as the earliest point before a psychomotor response at which the 258 

decoder’s decision was correct for at least 100 ms and with a confidence level above the (C-259 

dependent) 5th percentile threshold. Trials without such a streak of correct classification were 260 
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removed from the analysis (17.4% of trials). We opted for this conservative procedure because any 261 

‘decoding onset’ beyond the button press would be an indication of a poor signal-to-noise ratio or 262 

could be related to the motor response itself.  263 

We computed hierarchical linear mixed regression models to examine the link between the 264 

estimated onsets as the predictor of response times. We defined the intercepts as random effects at 265 

the second level (participants), and the intercepts and slopes as random effects at the third level 266 

(tastes). To examine whether the emerging patterns could be linked to other taste features besides 267 

taste identity, we also computed analogous models with participants’ rating scores of taste intensity 268 

and pleasantness as the dependent variable. We report the fixed effects with their standard errors 269 

and estimated p-values, using (χ2-distributed) likelihood ratio-tests against the restricted (intercept-270 

only) null models. 271 

 272 

Orofacial electromyography 273 

To test whether taste-specific orofacial behavior may have influenced the present data, we recorded 274 

surface electromyography (EMG) in a healthy female participant during tasting. To validate the 275 

placement of the EMG electrodes, we recorded 60 s EMG to three types of movement relevant to 276 

tasting: tongue movements, and the emotional facial expressions related to disgust (pouting) and 277 

pleasure (smile). The movement-related EMG also served as a benchmark for signal strength 278 

because we expected little to no EMG activity during tasting because participants kept a slightly 279 

opened jaw and an extended tongue during the experiment (see Figure 1B), which inhibits oromotor 280 

behaviour such as tongue, lip or jaw movements and innate craniofacial responses of the lower 281 

facial area, which are known to vary between non-sweet tastes (Rosenstein and Oster, 1988). To 282 

increase the saliency of the taste stimuli and with that the likelihood to evoke a facial and/or oro-283 

motor reaction, we used a higher flow rate compared to the EEG study and presented the tastants 284 
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as single pulses (not embedded in a stream of water) using a computer-controlled gustometer based 285 

on neMESYS syringe pumps (Cetoni, Korbußen, Germany), which delivers liquids at higher flow 286 

rates with otherwise comparable stimulus properties to the EEG study (Andersen et al., 2018). 287 

Tastants were 0.675 ml vaporized aliquots with a flow rate of 0.75 ml/s that were applied to the 288 

anterior third of the tongue and washed off with a water rinse of 2 ml at a flow rate of 0.5ml/s. 289 

EMG was recorded at 1 kHz with 15 mm3 adhesive Ag/AgCl electrodes (BlueSensor N, Ambu 290 

A/S, Ballerup, Denmark) and snap-on wires connected to the PowerLab 26T amplifier 291 

(ADInstruments, Oxford, United Kingdom) using the LabChart Pro 8.1.10 software 292 

(ADInstruments, Oxford, United Kingdom). During recording, data were filtered with a 0.5 Hz 293 

highpass and 2 kHz lowpass filters. We recorded from four different muscles: the left masseter, 294 

which controls mastication and jaw movements, the left zygomaticus major, which controls the 295 

smile, the right mentalis, which controls the chin and contributes to pouting, and the right 296 

infrahyoid muscles, which play a role in swallowing. The sides of the face were chosen to allow 297 

convenient placement of the electrodes and to avoid tangling of cables. For each muscle, two 298 

electrodes were spaced approx. 1 cm apart and the ground electrode was placed on the dorsum of 299 

the right hand.  300 

The participant leaned against a forehead rest and extended the tongue with a slightly opened jaw 301 

while fixating a central crosshair presented on a gray screen. Tastants were presented in blocks 302 

with 20 stimuli. Movements were recorded at random times between taste blocks. Each trial started 303 

with a central fixation cross presented for 2-3 s on a gray background before a taste stimulus was 304 

presented for 900 ms, while the fixation cross remained on the screen. After a pause of 2 s, a water 305 

rinse was delivered for 4 s. A gray screen was displayed during the rinse until the next trial. The 306 

ISI was 20-21 s. Each of four tastants was presented 10 times in pseudo-random order. Because 307 

the amplifier allowed simultaneous recording of only two muscles, we conducted the experiment 308 
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twice, with muscles and tasks counterbalanced. We found no obvious EMG during tasting (in 309 

contrast to movement) suggesting that the reported EEG effects are not confounded by taste-310 

specific orofacial behavior (see Inline Supplementary Figure 1). 311 

 312 

RESULTS 313 

Taste information encoded by delta activity 314 

All four tastes evoked a taste-related electrophysiological response that is similar to previous 315 

reports (Tzieropoulos et al., 2013; Crouzet et al., 2015; Fig. 1D). To investigate the encoding of 316 

taste information at a specific frequency, we used SVM classifiers at each time and frequency step 317 

to decode the four tastes using either the spectral power (Fig. 2A) or the phase angles (visualized 318 

as ITC in Fig. 2C). We found significant clusters of increased classification performance in the 319 

lower part of the frequency spectrum. The classifiers decoded taste-specific information from the 320 

activation patterns of the spectral power in a major cluster largely contained within the 1 to 4 Hz 321 

band (30 to 1160 ms; AUCmax = 56.4%±1.2, p < .0001, at 1.4 Hz and 360 ms; Fig 2B), which 322 

extended into the 8-12 Hz range between 480 and 860 ms. Similarly, decoding of the phase angles 323 

revealed a major cluster contained within the frequency spectrum below 8 Hz (10 to 1260 ms; 324 

AUCmax = 64.3%±2.0, p < .0001, at 2.9 Hz and 300 ms; Fig 2D). This finding suggests that taste 325 

identity is encoded mainly by power and phase in the delta-frequency range (1-4 Hz), and therefore, 326 

the subsequent analysis focused solely on this frequency.  327 

 328 

To optimize temporal precision, we decoded taste identity information from the electrical 329 

recordings after band-pass zero-phase FIR filtering (0.5-4.5Hz±1; order: 330) to isolate delta 330 

activity from other frequencies. We identified the earliest point of significant above-chance 331 

classification performance at 130 ms (AUC = 53.0%±1.4, p = .005); it lasted until the end of the 332 
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epoch (AUCmax = 63.7%±1.7, p < .0001, at 450 ms; Fig. 2E). Moreover, in contrast to the unfiltered 333 

recordings, the delta-encoded signal yielded higher classification performance throughout the 334 

epoch, suggesting an overall improved signal-to-noise ratio (AUCmaxdiff = 5.3% at 460 ms, p = .007; 335 

cf. Fig. 2E). Notably, taste patterns appeared to emerge earlier during this speeded taste-detection 336 

task than in a previously reported study, in which participants gave delayed taste-categorization 337 

responses (Crouzet et al., 2015). To test this, we applied the multi-class decoding analysis reported 338 

here using the FIR filtered electrophysiological recordings obtained during the delayed tasting task 339 

and compared the findings (Fig. 2F). We found that classification performance reached significance 340 

40 ms later in the delayed task, compared to the speeded one (at 170 ms, AUC = 52.6%±1.4, p 341 

= .022). The classification performance of the speeded task was significantly higher than the 342 

delayed task during the periods from 140 to 170 ms and from 320 to 360 ms (all p < .0001; 343 

AUCmaxdiff = 4.7% at 160 ms). In contrast, the classification performance of the delayed task was 344 

significantly higher in later periods from 740 to 860 ms and from 950 to 990 ms (all p < .0001; 345 

AUCmaxdiff = 4.7% at 790 ms). Together, these findings indicate that the taste response pattern is 346 

susceptible to task demands. 347 

 348 

To exclude the possibility that the classifiers were using motor-related activation to solve the multi-349 

taste discrimination, we reiterated the procedure by carefully separating the response sides, so that 350 

classifiers were trained on patterns from trials with right-sided responses and tested on patterns of 351 

trials with left-sided responses, and vice versa. We found highly similar performance curves for 352 

classifiers trained on right- and left-sided responses with above-chance classification starting at 353 

130 ms for most of the time range for both response sides (training left, testing right: AUConset = 354 

53.6%±1.0, p = .022, AUCmax = 61.0%±1.3 at 520 ms; training right, testing left: AUConset = 355 

53.6%±1.1, p = .026; AUCmax = 63.0%±1.7 at 400 ms; Figure 2G). Importantly, the performance 356 
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curves for response-side and taste decoding were highly similar as well (compare Figures 2E and 357 

2G). The interchangeability of the response side topographies during classification confirms that 358 

the taste discriminability within the delta spectrum was independent of motor activation. 359 

   360 
The emergence of taste-evoked delta activity is predictive of taste detection responses 361 

The above findings indicate delta activation as an electrophysiological signature of taste-362 

information coding. To test whether there was a systematic link between these patterns and taste 363 

detection times, we computed multi-level linear mixed models between the onset of delta-encoded 364 

taste information and response times. We used SVM classifiers to discriminate each trial from its 365 

baseline period water rinse, which closely matched the taste-detection task that participants 366 

performed in a given trial (Fig. 3A). We found a highly significant positive relationship between 367 

the onsets of taste-pattern decoding and taste detection response times (β = .32±.03, χ2
(1,N=2990) = 368 

16.87, p < .0001; Fig. 3B) for each of the four tastes: salty (Mon = 185 ms, MRT = 643 ms, β = .35), 369 

sour (Mon = 196 ms, MRT = 680 ms, β = .34), sweet (Mon = 242 ms, MRT = 845 ms, β = .30), and 370 

bitter (Mon = 244 ms, MRT = 798 ms, β = .31). This finding indicates a functional relevance of this 371 

activation pattern for taste detection behavior, such that faster taste-pattern emergence can be 372 

linked to faster taste-detection times.  373 

 374 

To determine whether the observed delta activity was encoding taste identity rather than taste 375 

intensity or valence, we computed analogous mixed linear models using the intensity and 376 

pleasantness ratings as dependent variables. We observed no significant relationship between the 377 

onsets of taste-pattern decoding (quantified in ms) and intensity ratings (β = −.004±.002, χ2
(1,N=2984) 378 

= 2.33, p = .127; Msalty = 74, Msour = 79, Msweet = 51, Mbitter = 66; see Inline Supplementary Figure 379 

1A), and pleasantness ratings (β = .001±.002, χ2
(1,N=2985) = 0.15, p = .699; Msalty = 27, Msour = 27, 380 
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Msweet = 65, Mbitter = 26; see Inline Supplementary Figure 1B). Together, these results suggest that 381 

delta activity encodes information of taste identity rather than other taste features. 382 

 383 
 384 
DISCUSSION 385 

The fundamental role of coherent rhythmic activity in neuronal communication has been well 386 

established for perception and cognition across sensory systems and species (von Stein et al., 2000; 387 

Engel et al., 2001; Varela et al., 2001; Fries, 2005; Buzaki, 2006). Here, we identified for the first 388 

time delta activity (1-4 Hz) as a distinct electrophysiological signature of gustatory processing in 389 

the human brain. This finding adds to recent evidence that highlights the relevance of slow cortical 390 

rhythms in the coding of taste-specific information in the rodent gustatory cortex (<1.5 and 4-5 Hz; 391 

Pavao et al., 2014) and odor-specific content in the human olfactory cortex (4-8 Hz;  Jiang et al., 392 

2017).  393 

 394 

Primate taste processing involves neural computations in a widespread network, including the 395 

insula (primary gustatory area) and the orbitofrontal cortex (secondary gustatory area) (Pritchard 396 

and Di Lorenzo, 2015), which further link to subcortical structures regulating reward and feeding 397 

behavior (Katz and Sadacca, 2011), as well as somatosensory and visceral areas (Katz et al., 2002). 398 

Given that the length of an oscillatory cycle determines the range and timescale of cortical 399 

integration, such that slower oscillations bridge longer distances and accomplish more complex 400 

computations (Engel et al., 2010; Harmony, 2013), our findings of delta-encoded taste information 401 

may indicate the mechanism by which the human brain communicates within such a spatially 402 

distributed and highly interconnected system. Delta oscillations have been found to originate in the 403 

primate insula (Mesulam and Mufson, 1982), and they play a role in food-related arousal such as 404 

craving and reward (cf. Knyazev, 2007, 2012). We supplement this knowledge with evidence of a 405 
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novel role of delta activity in coding taste information in the human brain. Here, the slow-wave 406 

activity subsides with the offset of stimulation. Given the successful and improved classification 407 

of the taste quality information from the spectral signatures after attenuation of non-delta 408 

frequencies, we interpret this finding in accordance with the literature on slow rhythmic activity, 409 

which has been suggested to subserve the sequencing of a sensory experience into discrete 410 

processing entities (Colgin, 2013; Wilson et al., 2015). Accordingly, each processing cycle 411 

coordinates through its phase the activation of cell populations (phase coherence) that represent 412 

specific experiential aspects, whereas the cycle sequence links the individual segments to maintain 413 

the integrity of the experience.  Thus, information is encoded in one region, and by means of a 414 

specific phase and cycle, segregated information bits become accessible to distant brain areas by 415 

‘reading’ this oscillatory activity. Our findings suggest that delta activity contributes the candidate 416 

frequency with which such distinct information packages are transmitted from the same taste 417 

episode across the long spatial trajectory of the taste network. This interpretation will benefit from 418 

additional electrocorticographical data and modelling.  419 

In line with the notion that phase coherence coordinates neuronal activation, we found that the 420 

phase encoded more information than its amplitude. More than a means of coordinating clearly 421 

defined bits of information, in sensory cortices, the functional role of slow oscillations has been 422 

proposed as an internal reference frame which stabilizes the encoding of natural stimuli – analogous 423 

to a metronome which links and integrates the spike patterns of single neurons to a coherent code 424 

– thereby fostering perceptual robustness (Panzeri et al., 2014). This notion is especially intriguing 425 

for the chemical senses, for which sensory representations have to be formed in environments with 426 

a high degree of (temporal) uncertainty (cf. Jiang et al., 2017). Among other factors, the gustatory 427 

system encounters noise as sensory inputs originate from different spatial locations within the oral 428 

cavity over an extended period of mastication and swallowing with no precisely timed stimulus. 429 
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Indeed, the action potentials of (chemo-)sensory neurons are much more precisely timed than the 430 

chemical stimulation they respond to. When these action potentials are summed over long time 431 

windows, sensory information is at risk to be degraded or lost. Accordingly, an oscillatory 432 

reference frame may act as a pacemaker, which helps decode the incoming, segregated information 433 

from finely timed spike patterns of possibly distant areas (Panzeri et al., 2014). Thus, the gustatory 434 

system, like the olfactory, would benefit particularly from slow rhythmic activity as a means of 435 

attaining perceptual robustness.  436 

 437 

To determine whether delta-encoded taste information is in fact used for perceptual decisions, we 438 

correlated the onset of delta activity with the behavioral response time in each trial. This onset 439 

predicted when participants detected a given taste, such that a more rapid pattern-emergence 440 

corresponded to faster response behavior. Importantly, we excluded the possibility of decoding 441 

performance being confounded by motor signals through careful cross-response side validation. 442 

This apparent neural-behavioral link aligns well with the aforementioned notion that slow 443 

oscillations are not just a by-product of network processing, but have functional significance for 444 

the perceptual integration and temporal alignment of sensory inputs through coherence (e.g. via 445 

delay-based synchrony detection). Moreover – although the units by which neurons encode 446 

information are precisely timed spike patterns within a range of a few milliseconds – the 447 

behaviorally relevant information may very well extend over hundreds of milliseconds. Therefore, 448 

slow rhythmic patterns can encode information that is not available in local spike counts (Kayser 449 

et al., 2012), and thus enable other brain structures to extract relevant sensory information which 450 

informs decisions or concomitant perceptual states (Wilson et al., 2015). Indeed, the present data 451 

provide evidence of such a link between the timing of delta activity and subsequent behavior. 452 

 453 
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To test whether the timing of the earliest sensory taste-response is independent of behavioral 454 

demands, we compared the decoding performance between two different tasks: a fast paced, 455 

speeded taste-detection task (reported here) and a slow paced, delayed taste-categorization task 456 

(Crouzet et al., 2015). We found earlier and stronger delta-encoded taste discriminability in the 457 

speeded and more sustained taste discriminability in the delayed task, suggesting that neural taste 458 

responses are contingent upon behavioral goals. Admittedly, the present data do not allow to 459 

conclusively identify the aspect of the task that drives that difference. Task-dependent latency 460 

differences in event-related potentials have been observed previously for other modalities. Here we 461 

show that task-dependent latency shifts reflect actual shifts in the availability of taste category 462 

information. The observed flexibility in taste-information coding accords well with the observation 463 

that gustatory cortical activity varies greatly with expectation and focus of attention in rodents 464 

(Fontanini and Katz, 2009). In fact, it has been shown that the influence of cueing is maximal in 465 

the early portion of gustatory cortex responses by increasing the amount of selectively firing 466 

neurons, sharpening their tuning, and reducing variability (Samuelsen et al., 2012). Even though 467 

both (speeded and delayed) experimental tasks employed cueing, it is plausible that the task itself 468 

introduces a cue-like state change to the responsiveness of the gustatory cortex. Consequently, the 469 

degree and speed at which the taste system categorizes stimuli is likely to be tuned to situational 470 

demands, thereby enabling adaptive behaviour. 471 

 472 

In summary, we present evidence of activation in the delta-frequency range as an 473 

electrophysiological signature of taste processing in humans. We show that taste-specific content 474 

can be discerned from these signatures, which predict perceptual decisions and align flexibly with 475 

task requirements. 476 

 477 
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FIGURES AND FIGURE LEGENDS 618 
 619 

Figure 1. Experimental setup. 620 

A: The GU002 gustometer (Burghart Medizintechnik, Wedel, Germany) delivers liquids via 621 

separate lines and at constant temperature. B: Vaporized tastants and rinse are applied to the 622 

extended, anterior tongue. Tastants are not ingested but collected in a reservoir underneath the 623 

participant’s chin. C: Schematic depiction of a trial including the display, taste stimulation, and 624 

response. Atomized tastants (black) were embedded in a sequence of water (grey). Motor responses 625 

were recorded between taste onset and rating prompt. D: Grand-averaged global field power (GFP) 626 

for each of four tastes. Stimulus onset is at 0 ms. 627 
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  628 
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Figure 2. Taste information is encoded by delta oscillations.  629 

A) Spectral power estimates obtained via continuous wavelet transformation of the EEG recordings 630 

for frequencies from 1 to 100 Hz and averaged across 64 electrodes and 16 participants. The power 631 

represents the amplitude of the signal. Increases (warm colours) and decreases (cold colours) are 632 

relative to the baseline (for visualization). Vertical dashed line: stimulus onset; horizontal dotted 633 

lines: transitions between established frequency bands (1-4 Hz: delta, 4-8 Hz: theta, 8-12 Hz: alpha, 634 

12-30 Hz: beta, 30-100 Hz: gamma; cf. Herrmann et al., 2005). B) SVM classifiers were trained at 635 

each time point and frequency step to decode the four tastes given the (non-normalized) spectral 636 

power in the 64-electrode space. Performance is displayed as the AUC (50% corresponds to the 637 

chance level) averaged across participants (black contour lines indicate cluster-corrected 638 

significance). C) Phase-locking value or inter-trial coherence (ITC) is calculated from phase 639 

estimates obtained via continuous wavelet transformation for frequencies from 1 to 100 Hz. The 640 

ITC expresses the extent of phase synchronization across trials (remainder as in A). D) SVM 641 

classifiers were trained at each time point and frequency step to decode the four tastes given the 642 

phases in radians in the 64-electrode space (remainder as in B). E) Comparison of taste response-643 

pattern decoding between the broad-band and delta signal (1-4 Hz). SVM classifiers were trained 644 

at each time point to decode the four tastes, given the unfiltered (black) or FIR filtered (blue) 645 

electrophysiological recordings from 64 electrodes (solid lines: mean AUC across trials and 646 

participants; surrounding shaded regions ±1 SEM; colour-coded horizontal lines above the x-axis 647 

indicate above-chance performance; horizontal dotted line: theoretical chance level of 50%). F) 648 

Comparison between the speeded task of the current study and a delayed task (Crouzet et al., 2015). 649 

Colour-coded stars at the top indicate significantly different classification performance between 650 

tasks; colour-coded dashed vertical lines indicate task-specific starting times of significant multi-651 

taste discrimination (remainder as in E). G) Motor-control task. Response mappings were separated 652 

for the training and test set, i.e. the decoder was trained on trials with a left button press, and tested 653 

on trials with a right button press (and vice versa). Successful classification demonstrates that 654 

motor-related activity is irrelevant to the multi-taste discrimination (remainder as in E). 655 

 656 
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 659 
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Figure 3. The emergence of the delta-encoded electrophysiological taste signature is 660 

predictive of taste responses. A) SVM classifiers were trained within participants at each time 661 

point on the patterns of N-1 trials, in order to decode taste and water in the left-out trial (each trial 662 

was matched with its water baseline average). This classification task closely corresponds to the 663 

taste-detection task participants performed (press as soon as you taste something). Colour-coded 664 

solid lines: mean AUC across participants, surrounding shaded regions ± 1 SEM; colour-coded 665 

horizontal lines above the x-axis indicate periods of above-chance performance per participant; 666 

colour-coded dashed vertical lines: average onset time; black dashed vertical lines: average 667 

response time; grey vertical dashed line: stimulus onset; black horizontal dotted line: theoretical 668 

chance level of 50%. B) Correlation plots between the onsets of pattern decoding (determined as 669 

the earliest point at which a trial has been classified successfully for at least 100 ms) and taste-670 

detection response times. Color-coded solid lines indicate the taste-specific influence of decoding 671 

onset from the multi-level linear mixed regression fits, grey dashed vertical lines at 1.5 s indicate 672 

the end of the EEG epochs. 673 
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